Proposition 1:
The regularized determinant of Hessian Q of CS -functional at flat connection α satisfies

$$
\frac{\sqrt{\operatorname{det} d_{\alpha}^{*} d_{\alpha}}}{\sqrt{|\operatorname{det} Q|}}=T_{\alpha}^{1 / 2}
$$

where T_{α} is the Ray-Singer torsion

$$
T_{\alpha}(M)=\frac{\left(\operatorname{det} \Delta_{\alpha}^{0}\right)^{3 / 2}}{\left(\operatorname{det} \Delta_{\alpha}^{1}\right)^{1 / 2}}
$$

Proof:
By the identity $P^{2}=\Delta_{\alpha}^{0} \oplus \Delta_{\alpha}^{\prime}$ for

$$
P=\left(\begin{array}{cccc}
0 & -d_{\alpha}^{*} & 0 & 0 \tag{*}\\
-d_{\alpha} & 0 & 0 & 0 \\
0 & 0 & 0 & Q
\end{array}\right)
$$

we have $\operatorname{det} P^{\alpha}=\operatorname{det} \Delta_{\alpha}^{0} \oplus \operatorname{det} \Delta_{\alpha}^{\prime}$. Using (x), we see

$$
|\operatorname{det} P|=\underbrace{\operatorname{det}\left(d_{\alpha}^{*} d_{\alpha}\right)}_{=\operatorname{det} \Delta_{\alpha}^{\circ}}|\operatorname{det} Q|
$$

which gives

$$
|\operatorname{det} Q|=\frac{\left(\operatorname{det} \Delta_{\alpha}^{\prime}\right)^{1 / 2}}{\left(\operatorname{det} \Delta_{\alpha}^{c}\right)^{1 / 2}}
$$

Using $\Delta_{\alpha}^{0}=d_{\alpha}^{*} d_{\alpha} \rightarrow$ claim follows

The phase of the determinant:
Recall that

$$
\int_{-\infty}^{\infty} e^{i \lambda x^{2}} d x=\sqrt{\frac{\pi}{|\lambda|}} e^{\frac{\pi i}{4} \frac{\lambda}{|\lambda|}}
$$

\rightarrow the phase is proportional to $\sum_{i} \operatorname{sign} n \lambda_{i}$ In the case of Chern-simons theory, the correct generalization is the "eta invariant":

$$
\begin{aligned}
\eta(\alpha)=\frac{1}{2} \lim _{s \rightarrow 0} \sum_{i} \operatorname{sign} \lambda_{i}\left|\lambda_{i}\right|^{-s} \\
\rightarrow \frac{1}{\sqrt{\operatorname{det} Q}}=\frac{1}{\sqrt{\operatorname{det} Q \mid}} \cdot \exp \left(\frac{i \pi}{2} \eta(\alpha)\right)
\end{aligned}
$$

The Atiyah-Patodi-Singer index theorem then gives

$$
\frac{i \pi}{2}(\eta(\alpha)-\eta(0))=2 \pi i \underbrace{h^{2}(G)}_{=2} \operatorname{Cor}(\alpha)
$$

Let us now put all steps together and compute the asymptotic behaviour of $Z_{k}(M)$:

$$
Z_{k}(M)=\int \exp (2 \pi \sqrt{-1} k C S(A)) D A
$$

as $k \rightarrow \infty$

Recall that $C S(A)$ is degenerated along the a-bit of the gauge group
$\rightarrow \sqrt{\operatorname{det} d_{\alpha}^{*} d_{\alpha}} \quad$ is interpreted as the volume of the gauge group
Thus we obtain:

$$
Z_{k}(M) \sim_{k \rightarrow \infty} e^{i \pi \eta(0) / 2} \cdot \sum_{\alpha} \sqrt{T_{\alpha}(M)} e^{2 \pi i\left(k+h^{2}\right) \operatorname{cs}(\alpha)}
$$

$\operatorname{CS}(\alpha)$ and $T_{\alpha}(M)$ are topological invariants but $\eta(0)$ is not!
Trivialization of the tangent bundle:
$\eta(0)$ is the η invariant of the Q-operator coupled to

1) some metric of on M
2) trivial gauge field $A=0$

Let $d=\operatorname{dim} G$

$$
\begin{aligned}
& \left.2) \longrightarrow \eta(0)=d \cdot \eta_{\text {grave }} \quad\binom{\text { grav here }}{\text { =metric }} .\right) \\
& \rightarrow \Lambda=\exp \left(\frac{i d \pi}{2} \cdot \eta_{\text {grave }}\right)
\end{aligned}
$$

Define gravitational Chern-simons term:

$$
C S(g)=\frac{1}{8 \pi^{2}} \int_{M} \operatorname{Tr}\left(\omega \wedge d \omega+\frac{2}{3} \omega \wedge \omega \wedge \omega\right)
$$

where w is the Levi-Civita connection an the spin bundle of M.
\rightarrow requires trivialization of tangent bundle The Atyiah-Patodi-Singer index theorem says:

$$
\left.\frac{1}{2} \eta_{\text {grave }}+\frac{1}{12} \cdot \operatorname{CSCg}\right)
$$

is a topological invariant of M (but depends an framing)
\rightarrow define

$$
Z_{k} \sim e^{i \pi d\left(\frac{\eta g r a v}{2}+\frac{1}{12} \operatorname{cs}(g)\right)} \cdot \sum_{\alpha} \sqrt{T_{\alpha}} e^{\left.2 \pi i\left(k+L^{2}\right) \operatorname{cs} \alpha\right)}
$$

\rightarrow topological invariant
If the framing is shifed by s units, Z_{k} transforms as

$$
Z_{k} \rightarrow Z_{k} \cdot \exp \left(2 \pi i s \frac{d}{24}\right)
$$

Note: $\quad \lim _{k \rightarrow \infty} c=d$
§12. Chern-Simons perturbative invariants
We start with $G=U(1)$. Let $L=K_{1} \cup K_{2}$ be an oriented framed link with two comp. in \mathbb{R}^{3}. Define
$P:=$ Principal $U(1)$ bundle on \mathbb{R}^{3}
$A_{\mathbb{R}^{3}}:=$ space of connections on P
\rightarrow Chern-Simons partition function

$$
Z_{k}=\int_{A_{\mathbb{R}^{3}}} \exp \left(k \frac{\sqrt{-1}}{4 \pi} \int_{\mathbb{R}^{3}} A \wedge d A+F-\int_{k_{1}} A+F\left(k_{k_{2}} A\right) D A\right.
$$

$A \mapsto A \wedge d A$ defines a quadratic form on $f_{\mathbb{R}^{3}}$
Finite-dimensional analogy:

$$
\begin{align*}
& Q\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2} \sum_{i, j} \lambda_{i j} \cdot x_{i} x_{j} \\
\rightarrow & \int_{\mathbb{R}^{n}} e^{\sqrt{-1}\left(Q\left(x_{1}, \ldots, x_{n}\right)+\sum_{j=1}^{n} \mu_{j} x_{j}\right)} d x_{1} \ldots d x_{n} \\
\sim & e^{-\sqrt{-1}} \sum_{i, j} \lambda^{i j} \mu_{i} \mu_{j} \tag{*}
\end{align*}
$$

where $\left(\lambda^{i j}\right)$ is inverse matrix of $\left(\lambda_{i j}\right)$

In the case of the operator d, the inverse is an integral operator:

$$
\begin{aligned}
& d L(\vec{x}, \vec{y})=\delta^{(3)}(\bar{x}, \vec{y}) \quad(* *) \\
& (\hat{L} \varphi)(\bar{x})=\int_{y \in \mathbb{R}^{3}} L(\vec{x}, \vec{y}) \wedge \varphi(\vec{y}), \varphi \text { |-form }
\end{aligned}
$$

\rightarrow solution is given by the "Green form":
For $\vec{x} \in \mathbb{R}^{3} \backslash\{\overrightarrow{0}\}$ we put

$$
\begin{aligned}
& \omega(\vec{x})=\frac{1}{4 \pi} \frac{x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}}{\|\stackrel{\rightharpoonup}{x}\|^{3}} \\
& \int_{S^{2}} \omega=1
\end{aligned}
$$

Then the solution of $\left(x^{*}\right)$ is given by

$$
L(\vec{x}, \vec{y})=\omega(\vec{x}, \vec{y})
$$

\rightarrow analog of $(*)$ is:

$$
Z_{k} \sim \exp \left(\frac{\sqrt{-1} \pi}{k} \sum_{i, j} I\left(k_{i}, k_{j}\right)\right)
$$

where $I\left(K_{i}, K_{j}\right), 1 \leqslant i, j \leqslant 2$, is given by

$$
I\left(K_{i}, K_{j}\right)=\int_{\vec{x} \in K_{i} \vec{y} \in K_{j}} \omega(\vec{x}-\vec{y})
$$

if $i \neq j$.

For $i=j$,

$$
I\left(K_{i}, K_{i}\right)=\int_{\dot{x} \in K_{i}, \vec{y} \in K_{i}^{\prime}} \omega(\vec{x}-\vec{y})
$$

where k_{i}^{\prime} is a curve on the boundary of a tubular neighborhood of k_{i}^{\prime}.
Now let us proceed to $G=\operatorname{su}(2)$.
Finite-dim. analogy:

$$
Z_{k}=\int_{\mathbb{R}^{n}} e^{\sqrt{-1} k f\left(x_{1}, \ldots, x_{n}\right)} d x_{1}, \ldots d x_{n}
$$

\rightarrow restric to case:

$$
f\left(x_{1}, \ldots, x_{n}\right)=Q_{\rho}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i, j} \lambda_{i j k} x_{i} x_{j} x_{k}
$$

non-degenerate quadratic form
Change of variables gives

$$
\begin{aligned}
Z_{k}= & k^{-n / 2} \int_{\mathbb{R}^{n}} e^{\sqrt{-1} Q\left(x, \ldots, x_{n}\right)} \\
& \times \sum_{m=0}^{\infty} \frac{(\sqrt{-1})^{m}}{m!k^{m / 2}}\left(\sum_{i, j, k} \lambda_{i j} k^{x} \cdot x_{j} x_{k}\right)^{m} d x_{1} \ldots d x_{n}
\end{aligned}
$$

\rightarrow obtain asymptotic expansion for $k \rightarrow \infty$

We compute

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} e^{\sqrt{-1} Q\left(x_{1}, \ldots, x_{n}\right)}\left(\sum_{i, j, k} \lambda_{i j_{k}} x^{i} x^{j} x^{k}\right)^{m} d x_{1} \ldots d x_{n} \\
= & {\left.\left[\left(\sum_{i, j^{\prime} k} \lambda_{i j k} D_{i} D_{j} \cdot D_{k}\right)_{\mathbb{R}^{n}}^{m} \int^{\sqrt{-1}\left(Q\left(x_{1}, \ldots, x_{n}\right)+\sum_{k} \partial_{k} x_{k}\right.}\right) d x_{1} \ldots d x_{n}\right]_{j=0} }
\end{aligned}
$$

where $D_{\partial}=\frac{1}{\sqrt{-1}} \frac{\partial}{\partial J_{j}}$
complete square

$$
=\left[\left(\sum_{i, j, k} \lambda_{i j k} D_{i} D_{i} D_{k}\right)^{m} e^{\left.-\sqrt{-1} \frac{1}{2} \sum_{i, j} \lambda^{i j} J_{i} j_{j}\right]_{j=0} \text { }}\right.
$$

In the case $m=2$, we get

$$
\sum_{i, j, k, i^{\prime}, j^{\prime}, k} \lambda_{i j k} \lambda_{i j^{\prime} j^{\prime} k^{\prime}} \lambda^{i, 1^{\prime}} \lambda^{j j^{\prime}} \lambda^{k k^{\prime}}+\sum_{i j^{\prime} k^{i} j^{\prime \prime \prime} k^{\prime}} \lambda_{i j k} \lambda_{i^{\prime} j^{\prime} k^{\prime} \lambda^{i j} \lambda^{i k^{\prime}} \lambda^{i^{\prime} j^{\prime \prime}}}
$$

\rightarrow Feynman diagram expansion

